
www.manaraa.com

KERNEL-LEVEL IMPLEMENTATION OF ANENCRYPTING FILE SYSTEMA thesis submitted in partial ful�llment of the requirements for thedegree of Bachelor of Science with Honors in Computer Science fromthe College of William & Mary in Virginia,byBrian K. DeweyAccepted forWilliamsburg, VirginiaMay 1996

www.manaraa.com

AbstractThe need for secure storage of information has become increasingly impor-tant in the information age. Data encryption is the most powerful toolavailable to protect information. A modi�cation to the Linux operating sys-tem kernel has been developed that allows the transparent encryption anddecryption of an entire block device, providing a high degree of security ata low performance and inconvenience cost to the user.

www.manaraa.com

Contents1 Introduction : 42 Design of the Linux Secure File System : : : : : : : : : : : : 72.1 Fundamentals of data encryption : : : : : : : : : : : : 82.2 Overview of Linux �le system support : : : : : : : : : 102.3 Implementation of LSFS : : : : : : : : : : : : : : : : : 133 Performance analysis : 254 Conclusion : 29A Selected source code listings : : : : : : : : : : : : : : : : : : : 30A.1 encrypt.c : 30A.2 make request() : 33A.3 getblk() : 34A.4 wait on bu�er() : 37A.5 lsfs read super() : 37
1

www.manaraa.com

List of Figures2.1 Algorithm for CBC mode encryption : : : : : : : : : : : : : : 102.2 Algorithm for CBC mode decryption : : : : : : : : : : : : : : 112.3 Steps involved in reading data from disk : : : : : : : : : : : : 122.4 Algorithm for creating an LSFS superblock : : : : : : : : : : 162.5 Algorithm for loading LSFS superblock : : : : : : : : : : : : 172.6 Algorithm for enabling a bu�er to perform transparent en-cryption/decryption : 192.7 Algorithm for obtaining a bu�er : : : : : : : : : : : : : : : : 202.8 Algorithm for doing a device read/write request : : : : : : : : 212.9 Algorithm for reclaiming cache memory : : : : : : : : : : : : 243.1 Comparison of �le system performance : : : : : : : : : : : : : 28
2

www.manaraa.com

List of Tables2.1 Properties exhibited by single-key cryptographic functions : : 93.1 Compilation : 263.2 Large tar copy and extract : : : : : : : : : : : : : : : : : : : 273.3 Concurrent tar �le extraction and source compilation : : : : 28

3

www.manaraa.com

1 IntroductionEnsuring information security has long been a fundamental job of multi-useroperating systems. Most operating systems control access to �les througha system of user identi�cation and permissions, which provides an adequatelevel of security for most purposes. However, the persistent nature of diskstorage creates a vulnerability that operating system permissions cannot re-dress. Brie
y consider the following thought-experiment: sitting in front ofyour computer, you create a sensitive document and store it in a �le on a
oppy disk. You set the �le permissions so that only you have the authorityto read that document. The computer's operating system will steadfastlyrefuse to serve that information to any user but you. The document ap-pears to be secure. Now, remove the
oppy disk from the drive and holdit in your hand. Your sensitive document, encoded in a well-known andeasy-to-read protocol of 1's and 0's, sits on the surface of that disk | andthe operating system of the computer no longer controls who has access tothat information. Someone who illicitly obtained your disk would have noproblem reading your sensitive document on a di�erent computer. Thus,when dealing with �les that must remain con�dential, a user would be wiseto store the information on disk in such a way that even if the integrity ofthe physical media is compromised, the information stored on it remainssafe.Cryptography provides the best solution to this problem. Modern cryp-tosystems can protect �les by rendering them meaningless to any personwho lacks knowledge of a speci�c numeric key. Many encryption programs4

www.manaraa.com

exist for Unix-based machines that can provide this type of security. Mostrun as command-line utilities and work on a �le-by-�le basis | i.e., the usercreates a �le using one program and then runs the encryption program sep-arately to protect it. However, these utilities are typically awkward to useas they require the time-consuming and tedious ritual of running a separateprogram twice for every access to a con�dential �le.Further, command-line encryption utilities su�er from three potentialsecurity compromises that stem from human neglect or error. First and mostobvious, if a user ever forgets to run the encryption program after accessinga �le, the data will reside on the disk in a vulnerable form. Second, theuser must remember that deleting the unencrypted copy of the �le usuallywon't remove the data from the disk. In most operating systems, deletinga �le means its disk space has been marked available for future use. Theuser needs to remember to take whatever extra steps necessary to actuallyremove the unencrypted data from the disk. Finally, many applicationscreate temporary �les that store unencrypted pieces of your con�dentialdata elsewhere on the disk. The user must make sure these temporary �lesare wiped o� the disk to prevent a security compromise.The Cryptographic File System (CFS) [3] substantially improves uponthe security of command-line utilities by encrypting an entire �le system.This approach has several advantages. First, the user must present hisencryption key only when he begins his session with the �le system, insteadof providing it with each individual �le access. Second, CFS transparentlyencrypts and decrypts all data stored in the �le system, which ensures noinformation is ever on disk in clear form. This eliminates the problems of5

www.manaraa.com

forgetting to encrypt a �le when done, dealing with the residual imagesof deleted �les on the disk, and keeping track of temporary �les. Finally,instead of being implemented directly into an operating system kernel, CFSis implemented as a Network File Server (NFS) process. This allows peopleon many Unix-based platforms to use the software, and it also allows thesoftware to store encrypted �les on remote machines and keep the dataprotected as it crosses the network.CFS is especially suited for network-based �le access. When dealing with�les stored on the local machine, however, a strong argument can be madethat the encrypted �le system support should be integrated directly into theoperating system. First, the NFS protocol, which allows remote �le access,adds a signi�cant amount of unneeded overhead when dealing with a localdisk. Second, since disks are slow even without encryption, modern operat-ing systems are designed to minimize the number of times they must accessthe disk drive. This feature consequently minimizes the number of encryp-tion and decryption steps needed for an integrated encrypting �le system,which would boost performance. Finally, from a philosophical standpoint,it is one of the traditional jobs of a multi-user operating system to pro-vide security for local disk contents | providing encryption capabilities isa natural extension of the operating system's responsibility.This paper describes modi�cations to the Linux operating system kernelto provide encrypted �le system support. The new �le system, called LSFS(Linux Secure File System), has the simpli�ed key management and trans-parent encryption and decryption of CFS. While the kernel implementationlacks the ability to work with remote �le systems, it possesses a sizeable6

www.manaraa.com

performance edge over CFS when dealing with local �les.2 Design of the Linux Secure File SystemThe primary purpose of the Linux Secure File System is to protect sensi-tive data from the vulnerabilities inherent in persistent storage on a disk.When LSFS is used on a particular block device, it guarantees that no �leinformation will ever be stored on that device in clear format. Thus, even ifthe security of the disk itself is compromised, no data may be obtained fromit without knowledge of the encryption key. LSFS has the following designgoals:� Transparent access to data. Files on an encrypted �le systemshould behave like �les on any other �le system. Applications thataccess data on an encrypted �le system should behave exactly as ifthey were accessing data on a non-encrypted �le system.� Minimal performance impact. While the encryption and decryp-tion process is computationally expensive, the kernel should ensurethat the user feels a minimal performance burden when using the �lesystem.� Minimal inconvenience for the user. The kernel should minimizethe number of extra steps the user needs to take in order to use anencrypted �le system. In particular, the kernel should minimize thenumber of times the user is required to enter the encryption key.7

www.manaraa.com

� Thorough protection of �le contents. In order to gain the maxi-mum bene�t from cryptography, the encrypted �le system should ap-pear indistinguishable from a random sequence of bytes to any personwho does not have the proper key. This means that �le contents mustbe scrambled in such a way that it would be impossible to discoverany structure in the encrypted version of the �le, such as repetitionsof byte patterns. Additionally, it should be impossible to examine twoencrypted �les and determine how the plaintext versions of those �lesdi�er.� Protection of �le metadata. The �le system metadata should beencrypted to prevent any knowledge of �le names, sizes, access times,etc.The rest of this section provides an overview of data encryption andLinux �le system support before detailing the design and implementation ofLSFS.2.1 Fundamentals of data encryptionData encryption is the process of taking a meaningful sequence of dataP (called the plaintext) and transforming it with an encryption functionE and a key Ke into an apparently random sequence of data C (calledthe ciphertext). In order to restore the plaintext, the user must know thedecryption function D and decryption key Kd. Put in mathematical terms,one has a viable encryption scheme when E(P;Ke) = C and D(C;Kd) = Pfor all possible plaintexts P . Modern cryptosystems do not rely upon the8

www.manaraa.com

1. Given a key k and a message P , the cryptographic function producesciphertext C such that f(k; P) = C and f(k; C) = P .2. Each system encrypts data using a key selected from a large enoughkey-space to make an exhaustive search of all possible keys practicallyimpossible.3. It is computationally infeasible to deduce P if you know C withoutknowledge of the key (and vice versa).4. Given P and C, it is computationally infeasible to deduce the k thatgenerated the transformation.Table 2.1: Properties exhibited by single-key cryptographic functionssecrecy of the decryption function D to provide security; instead, a moderncryptosystem is secure if, given D and C, it is computationally infeasible todeduce the plaintext P without knowledge of the decryption key Kd. Single-key cryptosystems are a speci�c subset of modern cryptosystems where Ke =Kd | in other words, the key used to generate the ciphertext is the same keyused to restore the plaintext. (See table 2.1 for a summary of the propertiesof single-key cryptosystems).DESDES, the U.S. Government's standard for data encryption [1], is a single-key cryptosystem whose cryptographic strength has long been acknowledged.The DES encryption function uses a 56-bit key to encrypt 64 bits of plain-text. Plaintext longer than 64 bits is broken down into 64 bit blocks andeach block is encrypted separately. However, it is important to ensure thattwo identical 64-bit blocks of plaintext do not encrypt to identical 64-bit9

www.manaraa.com

algorithm CBC_encryptinput: plaintext, keyoutput: ciphertext{ for(every block of plaintext){ if(encrypting first plaintext block)XOR plaintext block with initialization vector;elseXOR plaintext block with previous ciphertext block;encrypt plaintext block and store in ciphertext;}} Figure 2.1: Algorithm for CBC mode encryptionblocks of ciphertext; this repetition could provide clues to a cryptanalyst asto the structure of the unencrypted data. To prevent this, the DES ciphermay be used in Cipher Block Chaining (CBC) mode [2] (see tables 2.1 and2.2). CBC mode uses the previous block of ciphertext as a mask for thecurrent block of plaintext, which prevents identical blocks of plaintext fromhaving the same ciphertext representation.12.2 Overview of Linux �le system supportSupport for �le systems in the Linux kernel is implemented in three mainlayers: the �le system layer, the bu�er cache layer, and the device driverlayer. Of these, the �le system layer and the bu�er cache layer are of primaryimportance to LSFS.User programs view information on disk as variable-length �les, while the1When encrypting the �rst block of plaintext, CBC mode uses an initialization vector(IV) as the mask. 10

www.manaraa.com

algorithm CBC_decryptinput: ciphertext, keyoutput: plaintext{ for(every block of ciphertext){ decrypt ciphertext block and store in plaintext;if(decrypting first ciphertext block)XOR plaintext block with initialization vector;elseXOR plaintext block with previous ciphertext block;}} Figure 2.2: Algorithm for CBC mode decryptiondisk driver views the disk as a numbered sequence of �xed-length blocks. TheLinux �le system layer translates a user program's request for a particularbyte of a particular �le into the corresponding request to fetch a block from adisk. The �le system accomplishes this feat by maintaining its own metadataon disk that tells it which blocks belong to which �les.The bu�er cache layer performs the critical task of maintaining thebu�ers in the computer's primary memory that hold the images of the blockson the disk. Further, the bu�er cache attempts to keep frequently accesseddisk blocks in memory. Since disk access time is much slower than memoryaccess time, the bu�er cache can boost the performance of the overall systemdramatically.To illustrate the interaction of the operating system layers, �gure 2.3diagrams many of the steps required during a typical disk read operation.11

www.manaraa.com

User Application

make_request()

read()

bread()

ll_rw_block()

User space

Kernel space

wait_on_buffer()

Disk driver

1

2

3

4

5

6

7

8

9

Disk

10

File system
layer

Buffer cache
layer

Device
driver
layer

HardwareSome steps involved in reading data from the disk: 1) The user applicationperforms the read() system call and asks the kernel to return a speci�ednumber of bytes from a �le. 2) The system call uses its knowledge of the �lesystem to determine what disk block contains the bytes requested by theuser program. It then calls the routine bread() to fetch the disk block intothe bu�er cache. 3) bread() looks for the block in the cache. If it is found,steps three through eight are skipped. However, if block is not already inthe cache, bread() obtains an empty cache entry and tells ll rw block()to fetch the disk contents. 4) ll rw block(), having validated the diskaccess, passes it to make request(). 5) make request() locks the bu�ercache entry and places a request in the disk driver's queue. This routinethen returns without waiting for the I/O to complete. The process thatinitiated the disk read will go to sleep in the wait on buffer() routine(see step 7). 6) The disk driver will eventually �nd the request in its queueand pull the block o� the disk. 7) Once the block has been read, the diskdriver releases the lock on the cache entry. This wakes up the original call,which had been asleep in wait on buffer(). 8) wait on buffer()returns, which noti�es bread() that the block has been read o� the diskand stored in the bu�er cache. 9) bread() returns the cache entry to theoriginal read() call. 10) The read() call �nds the requested bytes in thebu�er and returns them to the application.Figure 2.3: Steps involved in reading data from disk12

www.manaraa.com

2.3 Implementation of LSFSEncryption routinesThe current implementation of LSFS uses DES encryption (see page 9).However, LSFS hides the actual encryption engine from the bulk of theoperating system, making it a simple matter to change encryption algorithmsto one that best suits the needs of the system.File system changesAs outlined on page 10, the primary job of the kernel �le system layer isto translate requests for bytes of a �le into requests for pages o� the disk.LSFS uses the existing minix �le system code to accomplish these tasks.However, in addition to the traditional �le system responsibilities, the LSFS�le system layer is responsible for managing the disk's encryption key.LSFS requires that the user enter a pass phrase when doing any of thefollowing operations: creating an encrypted �le system (using the mkfs com-mand), checking the consistency of the �le system (using the fsck com-mand), and preparing an encrypted �le system for use (the mount com-mand). For all three cases, LSFS uses the MD5 message digest algorithm[4] to hash the user's pass phrase down to 128 bits. LSFS does not generatethe �le system encryption key from the 128-bit pass phrase hash, though,because if the user ever wanted to change his pass phrase, the kernel wouldhave to re-encrypt every block on the disk with the new key. Instead, LSFSgenerates a random2 encryption key and encrypts that key using 56 bits of2LSFS uses the truerand random number generator that is built into CFS. trueranduses
uctuations in machine timing to generate a truly random number.13

www.manaraa.com

the pass phrase hash. LSFS stores the encrypted copy of the key on the�le system superblock.3 Therefore, if the user ever wants to change his passphrase, LSFS only needs to re-encrypt the key stored on the superblockinstead of re-encrypting every block on the disk.In addition to storing an encrypted copy of the key, LSFS stores a knownstring encrypted with the same hash on the superblock. This enables thekernel to verify that the user has entered the correct pass phrase when heattempts to check the �le system consistency or prepare the �le system foruse | if the hash of the pass phrase decrypts the validation string to itsknown value, then the kernel knows that the proper pass phrase has beenentered.By storing the encryption key on the superblock, LSFS creates a boot-strapping problem. As described in section 2.3, the bu�er cache uses theencryption key to encrypt and decrypt blocks as they are moved to and fromthe disk. However, when accessing the disk's superblock for the �rst time,the bu�er cache does not yet know what the encryption key is, thus mak-ing bu�er-cache layer decryption impossible. To circumvent this, the bu�ercache treats the superblock as a special case and never performs transparentencryption or decryption when accessing that block on disk. Instead, it isthe responsibility of the �le system layer to encrypt �elds on the superblock3Every disk that contains a �le system has a superblock that stores information identi-fying the type of �le system on the device and containing important �le system parameters.Before the kernel can use a �le system, it reads the superblock from the disk and copiesthe �le system parameters into memory. Since LSFS uses the same �le system layout asminix, the structure of their superblocks are nearly identical. The LSFS superblock addsonly two �elds | one storing the an encrypted copy of the disk's key and the other �eldstoring a validation string. The superblock is conventionally stored on the block number0 of a device. Some �le systems store backup copies of the superblock elsewhere on thedisk; minix, upon which LSFS is based, does not.14

www.manaraa.com

as it feels necessary. Currently, LSFS only encrypts the key and valida-tion �elds of the superblock and, for simplicity, leaves information such asthe number of blocks on the device and the number of inodes unencrypted.Simple modi�cations to LSFS would encrypt these �elds as well.Most of the modi�cations to the �le system layer, therefore, have beencon�ned to the routines that create and read an LSFS superblock. Thealgorithm create lsfs superblock, depicted in �gure 2.3, is used by the mkfscommand when creating a new encrypting �le system; it merely adds theencrypted key and the encrypted validation string to the minix superblock.The algorithm load lsfs superblock (�gure 2.3) is used when mounting anencrypted �le system and checking its consistency. Its primary job is toensure that the mount or fsck commands fail if the improper pass phrasehas been entered. If the correct pass phrase has been given, it decrypts thekey and stores it in the in-kernel copy of the superblock for use by the bu�ercache layer (see page 18).4Once the �le system has been mounted with the correct passphrase, itfollows the same access semantics as any other �le system on the machine.Consequently, applications will be able to access the encrypted informationwithout change. Further, while the �le system is mounted, the traditionalsecurity methods of user identi�cation and �le permissions must be dependedupon | for while the data resides on the disk in encrypted form, it will be4Keeping a decrypted copy of the key in memory is a potential security compromise.However, the e�ects should be minimal, since the key resides in kernel memory only whenthe disk is mounted and only someone with root access could pull the key out of kernelmemory. If someone has root access to the computer, then there are much easier waysto access the data while the device is mounted, and the additional risk of storing thedecrypted key in memory is minimized. 15

www.manaraa.com

algorithm create_lsfs_superblockinput: pass phrase used for encryptionoutput: new superblock structure{ create minix superblock;create random encryption key;encrypt random encryption key with passphrase;store random encryption key on superblock;encrypt validation key with passphrase;store validation string on superblock;return superblock;} Figure 2.4: Algorithm for creating an LSFS superblockdecrypted whenever it is pulled into the computer's main memory.When no pass phrase is given, a user may still access the data on thedevice. However, the data will remain encrypted, and the user will not beallowed to see any of the �le system structure on the device. Thus, one mayuse a command such as dd that accesses the raw disk to create a backup ofthe encrypted �le system block by block.Bu�er cache changesAs previously outlined, the Linux bu�er cache is responsible for gettingblocks of data from a device and storing them for use by the rest of the kernel.The modi�ed Linux kernel that supports LSFS performs the encryption anddecryption when moving blocks of data between the bu�er cache and thedevice. This keeps the data stored on the device in encrypted form yet keepsit in the bu�er cache in clear form. 16

www.manaraa.com

algorithm load_lsfs_superblockinput: copy of the superblock from a diskpass phrase used for encryptionoutput: copy of superblock in kernel memory{ copy minix superblock information to kernel memory;decrypt validation string in superblock with passphrase;if(validation string <> known value)return with error;else{ decrypt random encryption key using passphrase;store random encryption key in kernel memory;return kernel copy of superblock;}} Figure 2.5: Algorithm for loading LSFS superblockTo accomplish this, additional information is included in each individualentry in the bu�er cache. In the unmodi�ed Linux kernel, each entry in thecache contains a pointer to a bu�er storing the data block, the device andblock numbers that identify where the data comes from, and pointers toorganize cache entries into lists (e.g., the cache keeps a list of dirty bu�ers,a list of locked bu�ers, a list of clean bu�ers in least-recently-used order,etc.). To support data encryption, four new �elds have been added to eachentry in the cache:1. A
ag indicating if the data block needs to be stored in encrypted formon the device.2. A
ag indicating if the kernel is currently in the process of reading17

www.manaraa.com

encrypted data from the device.3. A copy of the key used for encrypting and decrypting the block.4. A pointer to a data transfer bu�er that is used to store the encrypteddata on its way to or from the device.When the kernel wants access to a block of data on a device, it �rst checksif that block is already mapped to a bu�er cache. If not, the kernel �nds ablank cache entry to store the data. At this point, the kernel checks its copyof the device superblock for an encryption key; if one is found, the kernelknows that the data on the device is stored in encrypted form. Therefore,when it obtains its blank bu�er cache entry, it sets the encrypted
ag toTRUE and generates the key that will be used to encrypt and decrypt thatdata block. (The subsection on \Encryption strategy" (page 22) describeshow and why each block on the device has its own copy of an encryptionkey.) If the kernel had not found an encryption key in the device superblock,it would set the cache encrypted
ag to FALSE. (See �gure 2.7)Then, whenever the kernel attempts to read the block from the device tostore it in the cache entry, it checks the encrypted
ag. If the
ag indicatesthat the data is stored in encrypted form on the device, the kernel tells thedevice driver to read the data block into the data transfer bu�er insteadof directly into the cache entry. Then, when the device driver signals thekernel that the read is complete, the kernel uses the key stored in the cacheentry to decrypt the data transfer bu�er and store the plaintext in the cacheentry.Similarly, when the kernel wants to write a block from the cache back18

www.manaraa.com

algorithm prepare_encrypted_buffer/* Performs the necessary tasks to prepare a* buffer for transparent data encryption.*/input: disk bufferoutput: disk buffer prepared for encryptionor decryption{ if(buffer not already marked as prepared){ generate local key for buffer;store local key in buffer;get a free buffer from the cache;link the two buffers;mark the buffer as prepared;}return buffer;}Figure 2.6: Algorithm for enabling a bu�er to perform transparent encryp-tion/decryption
19

www.manaraa.com

algorithm getblk /* get a block in the buffer cache */input: device numberblock numberoutput: a buffer in the buffer cache that can now beused to store data from the device{ if(block in hash queue){ update LRU list;if(device uses encryption)prepare_encrypted_buffer;return buffer;}else{ obtain free buffer;if(device uses encryption)prepare_encrypted_buffer;put buffer on hash queue;put buffer on LRU list;return buffer;}} Figure 2.7: Algorithm for obtaining a bu�er
20

www.manaraa.com

algorithm make_request /* Sends a read or write request toa device driver */input: device numberblock numberlocked buffer from buffer cachetype of request(read or write)output: none{ prepare device to receive request;if(buffer uses encryption){ unlock buffer;if(read request)mark buffer as waiting for encrypted read;elseencrypt buffer data and store in data transfer buffer;/* the following command makes the data transfer *//* buffer the buffer that will be used for I/O */switch to the data transfer buffer;lock data transfer buffer;}submit request to device;} Figure 2.8: Algorithm for doing a device read/write requestto the device, it checks the encrypted
ag to see if it needs to encrypt theblock before writing. If it does, it stores the encrypted version of the datablock in the data transfer bu�er and tells the device driver to write theinformation in the data transfer bu�er to the disk. (See �gure 2.8.)21

www.manaraa.com

Encryption strategyAs described earlier, DES (the underlying encryption scheme used by LSFS)works by encrypting or decrypting an 8-byte block and then moving on tothe next block (see page 9). Using DES in CBC mode prevents two identical8-byte blocks of plaintext from having the same ciphertext representation.This encryption strategy is used when encrypting and decrypting a blockof data from the device to mask any patterns in the data on that block.However, just as we want to prevent two identical 8-byte blocks of plaintextfrom having the same ciphertext representation, we want to ensure thattwo identical disk blocks on the same device do not appear identical whenencrypted. The type of block chaining used in CBC is not an e�cientalgorithm in this situation because of the random access nature of individualblocks on a device. A CBC-like algorithm would require that if we want toread the nth block from a device, we also have to read the (n� 1)th blockto have the bitmask used in the block chaining process. If the user programchanges the data on the nth block, it would require re-enciphering and re-writing all blocks coming after it on the disk.A system of \master" and \local" encryption keys was used to solvethis problem. The encryption key stored on the superblock of the deviceis the \master" key for the device. However, instead of being used directlyto encrypt/decrypt blocks on that device, it is used to generate a \local"key for each block, and the local key is used for all of that block's readsand writes. (See the section covering the bu�er cache, page 16.) Since eachblock on the device gets its own encryption key, even two identical blocks22

www.manaraa.com

will appear di�erent when encrypted.A local key is generated by encrypting the block number with the masterkey. Because of the properties of DES encryption, if one does not know themaster key, there is no feasible way to determine the local key from the blocknumber alone. However, if an attacker is somehow able to determine thelocal key that was used to encrypt/decrypt a disk block, the knowledge ofboth the block number and the local key does not give enough informationto determine the master key.5Bu�er memory managementThe Linux bu�er cache does not occupy a �xed amount of memory. Instead,whenever the cache needs to obtain free bu�ers, it �rst checks if it candedicate more memory to the bu�ers. If so, it will expand the size of thebu�er cache to make room for the free bu�ers; otherwise, it gets rid of oldcache data to make room for the new disk blocks. This allocation policymakes the cache more e�cient because it enables the maximum amount ofdata to reside in memory, minimizing the number of times the operatingsystem needs to access the disk.However, the bu�er cache's dynamic growth tends to rapidly claim all5One possible mode of cryptanalysis, called the known-plaintext attack, depends uponknowing some plaintext P and its ciphertext representation C and using that informationto determine the k such that E(P; k) = C. I have found no literature suggesting thatthe DES cipher is vulnerable to this speci�c attack. However, even if there is a smallvulnerability to the known-plaintext attack, the system of master and local keys shouldbe no less secure than a conventional system that uses the same key to encrypt each block.If the cryptanalyst was able to determine a block's local key from examining the block'sdata | the �rst step in conducting the known-plaintext attack against this system |then he would have been able to determine the single key used in a conventional systemfrom examining the same data. 23

www.manaraa.com

algorithm try_to_free /* attempt to reclaim cache memory */input: candidate memory pageoutput: success or failure indication{ for(every buffer on page){ if(buffer is not a data transfer bufferAND it is dirty or in use)return failure;if(buffer is a data transfer bufferAND its plaintext is dirty or in use)return failure;}for(every buffer on page){ if(buffer is not a data transfer buffer){ remove buffer from lists;if(buffer comes from encrypted device){ unlink plaintext and data transfer buffers;insert data transfer buffer on free list;}}else{ unlink plaintext and data transfer buffers;remove plaintext buffer from lists;insert plaintext buffer on free list;}put buffer in unused list;}free page;return success;} Figure 2.9: Algorithm for reclaiming cache memory24

www.manaraa.com

available memory. Thus, in order for the cache to remain e�cient, it needs tobe able to relinquish its memory when needed by other parts of the operatingsystem. The key algorithm in this process is try to free (�gure 2.3), whichchecks if a particular memory page used by the cache can be relinquished toother parts of the operating system. The algorithm succeeds if all bu�ers onthe memory page are clean (i.e., the bu�er contains the same informationas its corresponding disk block) and if no processes are using the bu�er.The presence of encrypted data transfer bu�ers in the cache memoryspace complicates the original algorithm. When the algorithm encountersa data transfer bu�er on the page it is attempting to free, it needs to seeif its corresponding plaintext bu�er is clean and unused. If it is, then thealgorithmmay proceed; otherwise, the algorithm fails, since the data transferbu�er may not be reclaimed by the system as long as its plaintext equivalentis dirty or in use. If the algorithm does reclaim the memory of a data transferbu�er, it marks the corresponding plaintext bu�er as available for use.3 Performance analysisThe use of LSFS carries with it a performance price stemming from theoverhead of performing a computationally-expensive encryption or decryp-tion every time an LSFS disk is accessed. The degree of performance lossfor a particular application will depend upon its I/O intensity and how e�-ciently the bu�er cache performs to minimize actual disk accesses for the ap-plication. Three benchmark tests were used to measure LSFS' performanceunder various workloads. All benchmarks were performed on a 90 megahertz25

www.manaraa.com

File system Elapsed time(95% con�dence interval)Clear FS, regular kernel 43:8� 0:1Clear FS, modi�ed kernel 44:7� 0:4LSFS 44:9� 0:2CFS 69:7� 0:5Table 3.1: CompilationPentium with 32 megabytes of primary memory and a 700 megabyte IDEhard drive. Each benchmark was run ten times on each of four �le systems| the minix �le system implemented in the Linux 1.2.8 kernel, the sameminix �le system code running in the modi�ed, LSFS-enabled kernel, theLSFS �le system, and CFS. The tables in this section report the averageexecution time for the set of runs and the corresponding 95% con�denceinterval.Table 3.1 shows the amount of time it took to compile the CFS soft-ware on each of the four �le systems. This benchmark measures the �lesystem performance under light-to-moderate workloads with moderate diskI/O activity (the CFS source contains roughly 9200 lines of code and 4750semicolons). This benchmark exhibits the bene�ts the bu�er cache bringsto transparent disk encryption. LSFS, which uses the read/write cachingbuilt into the kernel, ran with only a 3% overhead. CFS, which uses nowrite caching, ran 59% slower.Table 3.2 shows the results from copying a 6.4 megabyte compressed tar�le from a remote �le server onto the four �le systems and extracting thearchived �les. This tests the performance of the �le systems under heavy26

www.manaraa.com

File system Elapsed time(95% con�dence interval)Clear FS, regular kernel 60:4� 0:3Clear FS, modi�ed kernel 62:1� 0:8LSFS 177:2� 1:0CFS 311:3� 0:4Table 3.2: Large tar copy and extractdisk utilization with minimal cache bene�ts. The lack of e�cient cachingleads to a pronounced di�erence between the encrypting and non-encrypting�le systems. In this test, LSFS runs slower than a non-encrypting �le sys-tem by a factor of 2.9; CFS' poor performance, a factor of 5.1 slower thannon-encrypting �le systems, can be attributed to the additional overheadrequired to copy data through the NFS protocol.Finally, table 3.3 shows the time taken to run both the CFS source-�le compilation and the tar �le extraction concurrently. This tests the �lesystems under a heavy load. It also stresses the cache as two processescompete for bu�er space and generate more random disk access patterns.Under this burden, LSFS runs a factor of 2.1 slower; CFS runs slower by afactor of 3.8.Figure 3.1 summarizes the performance of the four �le systems. WhileLSFS runs slower than non-encrypting �le systems, especially when cachingbene�ts are reduced, the low overhead of the kernel implementation allowsfor a substantial performance improvement over CFS.27

www.manaraa.com

File system Elapsed time(95% con�dence interval)Clear FS, regular kernel 97:6� 0:3Clear FS, modi�ed kernel 107:9� 0:9LSFS 208:5� 0:5CFS 378:9� 0:5Table 3.3: Concurrent tar �le extraction and source compilation
Performance analysis

Minix: regular kernel

Minix: modified kernel

LSFS

CFS

seconds

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

compilation tar file extraction concurrent compilation
and extractionFigure 3.1: Comparison of �le system performance28

www.manaraa.com

4 ConclusionBy integrating data encryption into the operating system kernel, LSFS pro-vides thorough security for information stored on the local machine. Unlikeencryption programs that run outside of the kernel, LSFS is able to usethe bu�er cache to minimize the performance impact of encryption. Thus,LSFS demonstrates that operating system support for encrypted �le systemsis a viable solution to the problem of providing increased security withoutdecreasing convenience or performance.

29

www.manaraa.com

A Selected source code listingsA.1 encrypt.c/*** encrypt.c** This is the file that contains the core encryption/decryption* routines for the extended Linux kernel. There are two key routines* that currently depend upon a simple DES implementation lifted* shamelessly from CFS. However, more sophisticated encryption* can and should be substituted in this file at a later date.** The important routines that MUST be provided to the kernel are:******** void scramble_key(key master_key, unsigned long block_no, key local_key);* This routine is responsible for taking a master key (constant for the* entire filesystem) and a block number and generating a local key* that will be used for encrypting/decrypting that particular block* on the filesystem.******* void encrypt_buffer(char *plaintext, char *ciphertext, key local_key, int size);* This routine takes a buffer "plaintext" of size "size" and encrypts it using* the local_key, storing the result in ciphertext.******* void decrypt_buffer(char *plaintext, char *ciphertext, key local_key, int size);* This routine needs to reverse what was done above.**//* $Id: encrypt.c,v 1.8 1996/02/24 00:44:58 bkdewe Exp bkdewe $ */#ifndef __KERNEL__#include <stdio.h>#endif /* __KERNEL__ */#include <linux/fs.h> /* Contains the definition of "key" */#define C_BLOCK_SIZE 8 /* Size of an encryption "chunk" */typedef char vector[C_BLOCK_SIZE];void initVector(vector);void xorVector(vector, vector);void copyVector(vector, vector);void printKey(key k); /* Used for debugging *//* The following routines are in cfs_des.c *//* A more sophisticated algorithm will need to replace these calls. */30

www.manaraa.com

int q_block_cipher(key short_key, key text, int decrypting);int des_block_cipher(key expanded_key, key text, int decrypting);int des_key_setup(key _key, char *subkeys);void key_crunch(char *buffer, char *key, int size);void scramble_key(key master_key, unsigned long block_no, key local_key){ char ex_key[128], *alias_block_no;int i;alias_block_no = (char *)&block_no;for(i = 0; i < KEY_SIZE; i++)local_key[i] = alias_block_no[i % sizeof(long)];/* Use the master key to encrypt the doubled-binary representation of the *//* block number we generated above. The result is the local key for the *//* block. This process should generate a local key that cannot be determined *//* without knowledge of the master key. */des_key_setup(master_key, ex_key);des_block_cipher(ex_key, local_key, 0);}void encrypt_buffer(char *plaintext, char *ciphertext, key local_key, int size){ char ex_key[128], *cur;int i;vector iv;initVector(iv);des_key_setup(local_key, ex_key); /* Generate extended key */if(size % 8)#ifdef __KERNEL__panic("Buffer size for filesystem encryption not a multiple of 8!\n");#else{ fprintf(stderr, "Buffer size for filesystem encryption not a multiple of 8!\n");abort();}#endifmemcpy(ciphertext, plaintext, size);cur = ciphertext;for(i = 0; i < size / 8; i++){ xorVector(cur, iv);des_block_cipher(ex_key, cur, 0); 31

www.manaraa.com

xorVector(iv, cur);cur += 8;}}void decrypt_buffer(char *plaintext, char *ciphertext, key local_key, int size){ char ex_key[128], *cur;int i;vector iv, old;initVector(iv);des_key_setup(local_key, ex_key); /* Generate extended key */if(size % 8)#ifdef __KERNEL__panic("Buffer size for filesystem encryption not a multiple of 8!\n");#else{ fprintf(stderr, "Buffer size for filesystem encryption not a multiple of 8!\n");abort();}#endifmemcpy(plaintext, ciphertext, size);cur = plaintext;for(i = 0; i < size / 8; i++){ copyVector(old, cur);des_block_cipher(ex_key, cur, 1);xorVector(cur, iv);xorVector(iv, old);cur += 8;}}voidinitVector(vector v){ int i;for(i = 0; i < C_BLOCK_SIZE; i++)v[i] = '\0';}voidxorVector(vector new, vector base){ int i; 32

www.manaraa.com

for(i = 0; i < C_BLOCK_SIZE; i++)new[i] ^= base[i];}voidcopyVector(vector dest, vector src){ int i;for(i = 0; i < C_BLOCK_SIZE; i++)dest[i] = src[i];}A.2 make request()static void make_request(int major,int rw, struct buffer_head * bh){ unsigned int sector, count;struct request * req;int rw_ahead, max_req;/* ... *//* If we're going to be doing an encrypted data transfer, set that up before* looking for the free request.*/ if((bh->b_encrypted) && (bh->b_blocknr > 1)){ unlock_buffer(bh);if(rw == READ){ bh->b_encrypted_read = 1; /* Flag this buffer */mark_buffer_clean(bh); /* Mark us as clean */bh = bh->b_cipher; /* Read into this block */bh->b_list = BUF_CLEAN; /* Prevents refiling... */}else{ encrypt_buffer(bh->b_data, bh->b_cipher->b_data,bh->b_local_key, bh->b_size);mark_buffer_clean(bh);bh = bh->b_cipher; /* Write from this block */bh->b_list = BUF_CLEAN; /* Prevents refiling... */}lock_buffer(bh); 33

www.manaraa.com

}if(!bh)panic("make_request:Requesting null buffer!\n");/* look for a free request. *//* ... *//* fill up the request-info, and add it to the queue */req->cmd = rw;req->errors = 0;req->sector = sector;req->nr_sectors = count;req->current_nr_sectors = count;req->bh = bh;req->bhtail = bh;req->buffer = bh->b_data;req->sem = NULL;req->next = NULL;add_request(major+blk_dev,req);}A.3 getblk()void prepare_encrypted_buffer(struct buffer_head *bh){ /* This is an encrypted filesystem! */if(!bh->b_encrypted){ bh->b_encrypted = ENC_PLAINTEXT;scramble_key(sb->s_master_key, block, bh->b_local_key);if(!bh->b_cipher){ /* Setup bh->b_cipher, the data transfer* buffer that holds the ciphertext.*/bh->b_cipher = getcipherblk(isize, size);bh->b_cipher->b_encrypted = ENC_CIPHERTEXT;bh->b_cipher->b_dev = bh->b_dev;bh->b_cipher->b_blocknr = bh->b_blocknr;bh->b_cipher->b_size = bh->b_size;bh->b_cipher->b_count = bh->b_count;bh->b_cipher->b_dirt = bh->b_dirt;bh->b_cipher->b_lock = bh->b_lock;bh->b_cipher->b_uptodate = bh->b_uptodate; 34

www.manaraa.com

bh->b_cipher->b_flushtime = bh->b_flushtime;bh->b_cipher->b_req = bh->b_req;bh->b_cipher->b_cipher = bh;}}else if(bh->b_encrypted == ENC_CIPHERTEXT)/* If we get here, it means we found a ciphertext* buffer in the queues. THIS SHOULD NEVER HAPPEN.* Stop here as a sanity check.*/panic("getblk working with ENC_CIPHERTEXT buffer!");}struct buffer_head * getblk(dev_t dev, int block, int size){ struct buffer_head * bh;int isize = BUFSIZE_INDEX(size);struct super_block *sb;sb = get_super_nowait(dev);/* Update this for the buffer size lav. */buffer_usage[isize]++;/* If there are too many dirty buffers, we wake up the update processnow so as to ensure that there are still clean buffers availablefor user processes to use (and dirty) */repeat: bh = get_hash_table(dev, block, size);if (bh) {if (bh->b_uptodate && !bh->b_dirt)put_last_lru(bh);if(!bh->b_dirt) bh->b_flushtime = 0;/* But before we can continue, we need to see if this is an encrypting *//* filesystem buffer, and if so, mark it. */if(sb && sb->s_encrypted){ prepare_encrypted_buffer(bh);}else{ bh->b_encrypted = 0;/* Note: bh could point to a block that used to *//* be encrypted but now isn't. We need to check on *//* the b_cipher pointer and get rid of it if it *//* exists. */if(bh->b_cipher) 35

www.manaraa.com

{ /* Break connection... */bh->b_cipher->b_cipher = NULL;bh->b_cipher->b_dev = 0xffff;bh->b_cipher->b_encrypted = 0;put_last_free(bh->b_cipher);bh->b_cipher = NULL;}}bh->b_encrypted_read = 0; /* By default... */return bh;}while(!free_list[isize]){ refill_freelist(size);}if (find_buffer(dev,block,size))goto repeat;bh = free_list[isize];remove_from_free_list(bh);/* OK, FINALLY we know that this buffer is the only one of its kind, *//* and that it's unused (b_count=0), unlocked (b_lock=0), and clean */bh->b_count=1;bh->b_dirt=0;bh->b_lock=0;bh->b_uptodate=0;bh->b_flushtime = 0;bh->b_req=0;bh->b_dev=dev;bh->b_blocknr=block;insert_into_queues(bh);/* But before we can continue, we need to see if this is an encrypting *//* filesystem buffer, and if so, mark it. *//* Code is essentially duplicated from above... */if(sb && sb->s_encrypted){ prepare_encrypted_buffer(bh);} else bh->b_encrypted = 0;bh->b_encrypted_read = 0; /* By default... */return bh;} 36

www.manaraa.com

A.4 wait on bu�er()extern inline void wait_on_buffer(struct buffer_head * bh){ if (bh->b_lock)__wait_on_buffer(bh);if (bh->b_cipher) /* If we're encrypted... */if(bh->b_cipher->b_lock) /* We must check b_cipher's lock, too. */__wait_on_buffer(bh->b_cipher);if (bh->b_encrypted_read) /* If we were reading... */{ bh->b_encrypted_read = 0;decrypt_buffer(bh->b_data, /* Decrypt the data from the disk. */bh->b_cipher->b_data,bh->b_local_key,bh->b_size);bh->b_uptodate = 1;}}A.5 lsfs read super()struct super_block *lsfs_read_super(struct super_block *s,void *data,int silent){ struct buffer_head *bh;struct lsfs_super_block *ms;int i,dev=s->s_dev,block;extern void invalidate_buffers(dev_t);key validate;if (32 != sizeof (struct lsfs_inode))panic("bad i-node size");if(!data){ printk("LSFS-fs: passed NULL pass key\n");return NULL;}MOD_INC_USE_COUNT;lock_super(s);set_blocksize(dev, BLOCK_SIZE);printk("Attempting to load LSFS superblock\n");if (!(bh = bread(dev,1,BLOCK_SIZE))) {s->s_dev=0;unlock_super(s);printk("LSFS-fs: unable to read superblock\n");MOD_DEC_USE_COUNT;return NULL; 37

www.manaraa.com

}ms = (struct lsfs_super_block *) bh->b_data;/* Note: data must hold the user's pass key */decrypt_buffer(validate, ms->s_validate, data, KEY_SIZE);if(strcmp(validate, "bkdewe!")){ s->s_dev=0;unlock_super(s);printk("LSFS-fs: Invalid pass key.\n");MOD_DEC_USE_COUNT;return NULL;}s->s_encrypted = 1;/* By storing the decrypted masterkey in s_master_key,* the buffer cache layer will know to encrypt/decrypt blocks* from this device.*/decrypt_buffer(s->s_master_key, ms->s_masterkey, data, KEY_SIZE);s->u.lsfs_sb.s_ms = ms;s->u.lsfs_sb.s_sbh = bh;s->u.lsfs_sb.s_mount_state = ms->s_state;s->s_blocksize = 1024;s->s_blocksize_bits = 10;s->u.lsfs_sb.s_ninodes = ms->s_ninodes;s->u.lsfs_sb.s_nzones = ms->s_nzones;s->u.lsfs_sb.s_imap_blocks = ms->s_imap_blocks;s->u.lsfs_sb.s_zmap_blocks = ms->s_zmap_blocks;s->u.lsfs_sb.s_firstdatazone = ms->s_firstdatazone;s->u.lsfs_sb.s_log_zone_size = ms->s_log_zone_size;s->u.lsfs_sb.s_max_size = ms->s_max_size;s->s_magic = ms->s_magic;if (s->s_magic == LSFS_SUPER_MAGIC) {s->u.lsfs_sb.s_dirsize = 16;s->u.lsfs_sb.s_namelen = 14;} else if (s->s_magic == LSFS_SUPER_MAGIC2) {s->u.lsfs_sb.s_dirsize = 32;s->u.lsfs_sb.s_namelen = 30;} else {s->s_dev = 0;unlock_super(s);brelse(bh);if (!silent)printk("VFS: Can't find a lsfs filesystem on dev 0x%04x.\n", dev);MOD_DEC_USE_COUNT;return NULL;} 38

www.manaraa.com

/* Invalidate any buffers still in memory */invalidate_buffers(s->s_dev);for (i=0;i < LSFS_I_MAP_SLOTS;i++)s->u.lsfs_sb.s_imap[i] = NULL;for (i=0;i < LSFS_Z_MAP_SLOTS;i++)s->u.lsfs_sb.s_zmap[i] = NULL;block=2;printk("LSFS superblock successfully read!\n");for (i=0 ; i < s->u.lsfs_sb.s_imap_blocks ; i++)if ((s->u.lsfs_sb.s_imap[i]=bread(dev,block,BLOCK_SIZE)) != NULL)block++;else break;for (i=0 ; i < s->u.lsfs_sb.s_zmap_blocks ; i++)if ((s->u.lsfs_sb.s_zmap[i]=bread(dev,block,BLOCK_SIZE)) != NULL)block++;else break;if (block != 2+s->u.lsfs_sb.s_imap_blocks+s->u.lsfs_sb.s_zmap_blocks) {for(i=0;i<LSFS_I_MAP_SLOTS;i++)brelse(s->u.lsfs_sb.s_imap[i]);for(i=0;i<LSFS_Z_MAP_SLOTS;i++)brelse(s->u.lsfs_sb.s_zmap[i]);s->s_dev=0;unlock_super(s);brelse(bh);printk("LSFS-fs: bad superblock or unable to read bitmaps\n");MOD_DEC_USE_COUNT;return NULL;}set_bit(0,s->u.lsfs_sb.s_imap[0]->b_data);set_bit(0,s->u.lsfs_sb.s_zmap[0]->b_data);unlock_super(s);/* set up enough so that it can read an inode */s->s_dev = dev;s->s_op = &lsfs_sops;s->s_mounted = iget(s,LSFS_ROOT_INO);if (!s->s_mounted) {s->s_dev = 0;brelse(bh);printk("LSFS-fs: get root inode failed\n");MOD_DEC_USE_COUNT;return NULL;}if (!(s->s_flags & MS_RDONLY)) {ms->s_state &= ~LSFS_VALID_FS;mark_buffer_dirty(bh, 1); 39

www.manaraa.com

s->s_dirt = 1;}if (!(s->u.lsfs_sb.s_mount_state & LSFS_VALID_FS))printk ("LSFS-fs: mounting unchecked file system, ""running fsck is recommended.\n");else if (s->u.lsfs_sb.s_mount_state & LSFS_ERROR_FS)printk ("LSFS-fs: mounting file system with errors, ""running fsck is recommended.\n");return s;}

40

www.manaraa.com

Bibliography[1] Data encryption standard. FIPS PUB 46, National Bureau of Standards,Washington, DC, January 1977.[2] DES modes of operation. FIPS PUB 81, National Bureau of Standards,Washington, DC, December 1980.[3] Matt Blaze. A cryptographic �le system for Unix. Pre-print ofa paper presented at the First ACM Converence on Communica-tions and Computing Security, Fairfax, VA, November 3{5, 1993.�le://research.att.com/dist/mab/cfs.ps.[4] R. Rivest. The MD5 message-digest algorithm. RFC 1321, April 1992.
41

