KERNEL-LEVEL IMPLEMENTATION OF AN
ENCRYPTING FILE SYSTEM

A thesis submitted in partial fulfillment of the requirements for the
degree of Bachelor of Science with Honors in Computer Science from

the College of William & Mary in Virginia,

by

Brian K. Dewey

Accepted for

Williamsburg, Virginia
May 1996

www.manharaa.com

Abstract

The need for secure storage of information has become increasingly impor-
tant in the information age. Data encryption is the most powerful tool
available to protect information. A modification to the Linux operating sys-
tem kernel has been developed that allows the transparent encryption and
decryption of an entire block device, providing a high degree of security at

a low performance and inconvenience cost to the user.

www.manharaa.com

Contents

1 Introductiono Lo 4
2 Design of the Linux Secure File System 7
2.1 Fundamentals of data encryption 8
2.2 Overview of Linux file system support 10
2.3 Implementation of LSFS 13
3 Performance analysis o oo 25
4 Conclusion Lo 29
A Selected source code listings L. 30
Al encryptc ..o 30
A2 makerequest() 33
A3 getblk() . .. 34
A4 waitonbuffer(). Lo o oo 37
A5 Isfsreadsuper()o 37
1

www.manharaa.com

List of Figures

2.1 Algorithm for CBC mode encryption 10
2.2 Algorithm for CBC mode decryption 11
2.3 Steps involved in reading data from disk 12
2.4 Algorithm for creating an LSFS superblock 16
2.5 Algorithm for loading LSF'S superblock 17

2.6 Algorithm for enabling a buffer to perform transparent en-

cryption/decryption 19

2.7 Algorithm for obtaining a buffer 20

2.8 Algorithm for doing a device read/write request 21

2.9 Algorithm for reclaiming cache memory 24

3.1 Comparison of file system performance 28
2

www.manharaa.com

List of Tables

2.1 Properties exhibited by single-key cryptographic functions . . 9

3.1 Compilationo oL 26

3.2 Large tar copy and extract 27

3.3 Concurrent tar file extraction and source compilation 28
3

www.manharaa.com

1 Introduction

Ensuring information security has long been a fundamental job of multi-user
operating systems. Most operating systems control access to files through
a system of user identification and permissions, which provides an adequate
level of security for most purposes. However, the persistent nature of disk
storage creates a vulnerability that operating system permissions cannot re-
dress. Briefly consider the following thought-experiment: sitting in front of
your computer, you create a sensitive document and store it in a file on a
floppy disk. You set the file permissions so that only you have the authority
to read that document. The computer’s operating system will steadfastly
refuse to serve that information to any user but you. The document ap-
pears to be secure. Now, remove the floppy disk from the drive and hold
it in your hand. Your sensitive document, encoded in a well-known and
easy-to-read protocol of 1’s and 0’s, sits on the surface of that disk — and
the operating system of the computer no longer controls who has access to
that information. Someone who illicitly obtained your disk would have no
problem reading your sensitive document on a different computer. Thus,
when dealing with files that must remain confidential, a user would be wise
to store the information on disk in such a way that even if the integrity of
the physical media is compromised, the information stored on it remains
safe.

Cryptography provides the best solution to this problem. Modern cryp-
tosystems can protect files by rendering them meaningless to any person

who lacks knowledge of a specific numeric key. Many encryption programs

www.manaraa.com

exist for Unix-based machines that can provide this type of security. Most
run as command-line utilities and work on a file-by-file basis — i.e., the user
creates a file using one program and then runs the encryption program sep-
arately to protect it. However, these utilities are typically awkward to use
as they require the time-consuming and tedious ritual of running a separate
program twice for every access to a confidential file.

Further, command-line encryption utilities suffer from three potential
security compromises that stem from human neglect or error. First and most
obvious, if a user ever forgets to run the encryption program after accessing
a file, the data will reside on the disk in a vulnerable form. Second, the
user must remember that deleting the unencrypted copy of the file usually
won’t remove the data from the disk. In most operating systems, deleting
a file means its disk space has been marked available for future use. The
user needs to remember to take whatever extra steps necessary to actually
remove the unencrypted data from the disk. Finally, many applications
create temporary files that store unencrypted pieces of your confidential
data elsewhere on the disk. The user must make sure these temporary files
are wiped off the disk to prevent a security compromise.

The Cryptographic File System (CFS) [3] substantially improves upon
the security of command-line utilities by encrypting an entire file system.
This approach has several advantages. First, the user must present his
encryption key only when he begins his session with the file system, instead
of providing it with each individual file access. Second, CFS transparently
encrypts and decrypts all data stored in the file system, which ensures no

information is ever on disk in clear form. This eliminates the problems of

www.manaraa.com

forgetting to encrypt a file when done, dealing with the residual images
of deleted files on the disk, and keeping track of temporary files. Finally,
instead of being implemented directly into an operating system kernel, CF'S
is implemented as a Network File Server (NF'S) process. This allows people
on many Unix-based platforms to use the software, and it also allows the
software to store encrypted files on remote machines and keep the data
protected as it crosses the network.

CFS is especially suited for network-based file access. When dealing with
files stored on the local machine, however, a strong argument can be made
that the encrypted file system support should be integrated directly into the
operating system. First, the NF'S protocol, which allows remote file access,
adds a significant amount of unneeded overhead when dealing with a local
disk. Second, since disks are slow even without encryption, modern operat-
ing systems are designed to minimize the number of times they must access
the disk drive. This feature consequently minimizes the number of encryp-
tion and decryption steps needed for an integrated encrypting file system,
which would boost performance. Finally, from a philosophical standpoint,
it is one of the traditional jobs of a multi-user operating system to pro-
vide security for local disk contents — providing encryption capabilities is
a natural extension of the operating system’s responsibility.

This paper describes modifications to the Linux operating system kernel
to provide encrypted file system support. The new file system, called LSFS
(Linux Secure File System), has the simplified key management and trans-
parent encryption and decryption of CFS. While the kernel implementation

lacks the ability to work with remote file systems, it possesses a sizeable

www.manaraa.com

performance edge over CFS when dealing with local files.

2 Design of the Linux Secure File System

The primary purpose of the Linux Secure File System is to protect sensi-
tive data from the vulnerabilities inherent in persistent storage on a disk.
When LSFS is used on a particular block device, it guarantees that no file
information will ever be stored on that device in clear format. Thus, even if
the security of the disk itself is compromised, no data may be obtained from
it without knowledge of the encryption key. LSFS has the following design

goals:

e Transparent access to data. Files on an encrypted file system
should behave like files on any other file system. Applications that
access data on an encrypted file system should behave exactly as if

they were accessing data on a non-encrypted file system.

¢ Minimal performance impact. While the encryption and decryp-
tion process is computationally expensive, the kernel should ensure
that the user feels a minimal performance burden when using the file

system.

¢ Minimal inconvenience for the user. The kernel should minimize
the number of extra steps the user needs to take in order to use an
encrypted file system. In particular, the kernel should minimize the

number of times the user is required to enter the encryption key.

www.manaraa.com

¢ Thorough protection of file contents. In order to gain the maxi-
mum benefit from cryptography, the encrypted file system should ap-
pear indistinguishable from a random sequence of bytes to any person
who does not have the proper key. This means that file contents must
be scrambled in such a way that it would be impossible to discover
any structure in the encrypted version of the file, such as repetitions
of byte patterns. Additionally, it should be impossible to examine two

encrypted files and determine how the plaintext versions of those files

differ.

e Protection of file metadata. The file system metadata should be
encrypted to prevent any knowledge of file names, sizes, access times,

etc.

The rest of this section provides an overview of data encryption and
Linux file system support before detailing the design and implementation of

LSFS.

2.1 Fundamentals of data encryption

Data encryption is the process of taking a meaningful sequence of data
P (called the plaintext) and transforming it with an encryption function
F and a key K. into an apparently random sequence of data C' (called
the ciphertext). In order to restore the plaintext, the user must know the
decryption function D and decryption key K. Put in mathematical terms,
one has a viable encryption scheme when F(P, K.) = C and D(C,Kq) = P

for all possible plaintexts P. Modern cryptosystems do not rely upon the

www.manaraa.com

1. Given a key k and a message P, the cryptographic function produces

ciphertext C' such that f(k, P) = C and f(k,C) = P.

2. Each system encrypts data using a key selected from a large enough
key-space to make an exhaustive search of all possible keys practically
impossible.

3. It is computationally infeasible to deduce P if you know C' without
knowledge of the key (and vice versa).

4. Given P and C, it is computationally infeasible to deduce the k that
generated the transformation.

Table 2.1: Properties exhibited by single-key cryptographic functions

secrecy of the decryption function D to provide security; instead, a modern
cryptosystem is secure if, given D and C, it is computationally infeasible to
deduce the plaintext P without knowledge of the decryption key Ky. Single-
key cryptosystems are a specific subset of modern cryptosystems where K, =
K4 — in other words, the key used to generate the ciphertext is the same key
used to restore the plaintext. (See table 2.1 for a summary of the properties

of single-key cryptosystems).

DES

DES, the U.S. Government’s standard for data encryption [1], is a single-
key cryptosystem whose cryptographic strength has long been acknowledged.
The DES encryption function uses a 56-bit key to encrypt 64 bits of plain-
text. Plaintext longer than 64 bits is broken down into 64 bit blocks and
each block is encrypted separately. However, it is important to ensure that

two identical 64-bit blocks of plaintext do not encrypt to identical 64-bit

www.manaraa.com

algorithm CBC_encrypt
input: plaintext, key
output: ciphertext
{
for(every block of plaintext)
{
if (encrypting first plaintext block)
XOR plaintext block with initialization vector;
else
XOR plaintext block with previous ciphertext block;
encrypt plaintext block and store in ciphertext;

¥

Figure 2.1: Algorithm for CBC mode encryption

blocks of ciphertext; this repetition could provide clues to a cryptanalyst as
to the structure of the unencrypted data. To prevent this, the DES cipher
may be used in Cipher Block Chaining (CBC) mode [2] (see tables 2.1 and
2.2). CBC mode uses the previous block of ciphertext as a mask for the
current block of plaintext, which prevents identical blocks of plaintext from

having the same ciphertext representation.!

2.2 Overview of Linux file system support

Support for file systems in the Linux kernel is implemented in three main
layers: the file system layer, the buffer cache layer, and the device driver
layer. Of these, the file system layer and the buffer cache layer are of primary
importance to LSFS.

User programs view information on disk as variable-length files, while the

"When encrypting the first block of plaintext, CBC mode uses an initialization vector

(IV) as the mask.

10

www.manaraa.com

algorithm CBC_decrypt
input: ciphertext, key
output: plaintext

{
for(every block of ciphertext)

{

decrypt ciphertext block and store in plaintext;
if(decrypting first ciphertext block)

XOR plaintext block with initialization vector;
else

XOR plaintext block with previous ciphertext block;

Figure 2.2: Algorithm for CBC mode decryption

disk driver views the disk as a numbered sequence of fixed-length blocks. The
Linux file system layer translates a user program’s request for a particular
byte of a particular file into the corresponding request to fetch a block from a
disk. The file system accomplishes this feat by maintaining its own metadata
on disk that tells it which blocks belong to which files.

The buffer cache layer performs the critical task of maintaining the
buffers in the computer’s primary memory that hold the images of the blocks
on the disk. Further, the buffer cache attempts to keep frequently accessed
disk blocks in memory. Since disk access time is much slower than memory
access time, the buffer cache can boost the performance of the overall system
dramatically.

To illustrate the interaction of the operating system layers, figure 2.3

diagrams many of the steps required during a typical disk read operation.

11

www.manaraa.com

User Application

User space

File system
layer

Buffer cache
layer

wait_on_buffer()

Device
driver
layer

Hardware

Some steps involved in reading data from the disk: 1) The user application
performs the read() system call and asks the kernel to return a specified
number of bytes from a file. 2) The system call uses its knowledge of the file
system to determine what disk block contains the bytes requested by the
user program. It then calls the routine bread() to fetch the disk block into
the buffer cache. 3) bread() looks for the block in the cache. If it is found,
steps three through eight are skipped. However, if block is not already in
the cache, bread() obtains an empty cache entry and tells 11 _rw_block()
to fetch the disk contents. 4) 11_rw block(), having validated the disk
access, passes it to make request(). 5) make_request() locks the buffer
cache entry and places a request in the disk driver’s queue. This routine
then returns without waiting for the I/O to complete. The process that
initiated the disk read will go to sleep in the wait_on buffer() routine
(see step 7). 6) The disk driver will eventually find the request in its queue
and pull the block off the disk. 7) Once the block has been read, the disk
driver releases the lock on the cache entry. This wakes up the original call,
which had been asleep in wait_on buffer(). 8) wait_on_buffer()
returns, which notifies bread() that the block has been read off the disk
and stored in the buffer cache. 9) bread() returns the cache entry to the
original read() call. 10) The read() call finds the requested bytes in the
buffer and returns them to the application.

Figure 2.3: Steps involved in reading data from disk

12

www.manaraa.com

2.3 Implementation of LSFS
Encryption routines

The current implementation of LSFS uses DES encryption (see page 9).
However, LSFS hides the actual encryption engine from the bulk of the
operating system, making it a simple matter to change encryption algorithms

to one that best suits the needs of the system.

File system changes

As outlined on page 10, the primary job of the kernel file system layer is
to translate requests for bytes of a file into requests for pages off the disk.
LSFS uses the existing minix file system code to accomplish these tasks.
However, in addition to the traditional file system responsibilities, the LSF'S
file system layer is responsible for managing the disk’s encryption key.
LSFS requires that the user enter a pass phrase when doing any of the
following operations: creating an encrypted file system (using the mkfs com-
mand), checking the consistency of the file system (using the fsck com-
mand), and preparing an encrypted file system for use (the mount com-
mand). For all three cases, LSFS uses the MD5 message digest algorithm
[4] to hash the user’s pass phrase down to 128 bits. LSF'S does not generate
the file system encryption key from the 128-bit pass phrase hash, though,
because if the user ever wanted to change his pass phrase, the kernel would

have to re-encrypt every block on the disk with the new key. Instead, LSFS

generates a random? encryption key and encrypts that key using 56 bits of

2LSFS uses the truerand random number generator that is built into CFS. truerand
uses fluctuations in machine timing to generate a truly random number.

13

www.manaraa.com

the pass phrase hash. LSFS stores the encrypted copy of the key on the
file system superblock.® Therefore, if the user ever wants to change his pass
phrase, LSFS only needs to re-encrypt the key stored on the superblock
instead of re-encrypting every block on the disk.

In addition to storing an encrypted copy of the key, LSFS stores a known
string encrypted with the same hash on the superblock. This enables the
kernel to verify that the user has entered the correct pass phrase when he
attempts to check the file system consistency or prepare the file system for
use — if the hash of the pass phrase decrypts the validation string to its
known value, then the kernel knows that the proper pass phrase has been
entered.

By storing the encryption key on the superblock, LSFS creates a boot-
strapping problem. As described in section 2.3, the buffer cache uses the
encryption key to encrypt and decrypt blocks as they are moved to and from
the disk. However, when accessing the disk’s superblock for the first time,
the buffer cache does not yet know what the encryption key is, thus mak-
ing buffer-cache layer decryption impossible. To circumvent this, the buffer
cache treats the superblock as a special case and never performs transparent
encryption or decryption when accessing that block on disk. Instead, it is

the responsibility of the file system layer to encrypt fields on the superblock

*Every disk that contains a file system has a superblock that stores information identi-
fying the type of file system on the device and containing important file system parameters.
Before the kernel can use a file system, it reads the superblock from the disk and copies
the file system parameters into memory. Since LSFS uses the same file system layout as
minix, the structure of their superblocks are nearly identical. The LSFS superblock adds
only two fields — one storing the an encrypted copy of the disk’s key and the other field
storing a validation string. The superblock is conventionally stored on the block number
0 of a device. Some file systems store backup copies of the superblock elsewhere on the
disk; minix, upon which LSFS is based, does not.

14

www.manaraa.com

as it feels necessary. Currently, LSF'S only encrypts the key and valida-
tion fields of the superblock and, for simplicity, leaves information such as
the number of blocks on the device and the number of inodes unencrypted.
Simple modifications to LSEFS would encrypt these fields as well.

Most of the modifications to the file system layer, therefore, have been
confined to the routines that create and read an LSFS superblock. The
algorithm create_lsfs_superblock, depicted in figure 2.3, is used by the mkfs
command when creating a new encrypting file system; it merely adds the
encrypted key and the encrypted validation string to the minix superblock.
The algorithm load_lsfs_superblock (figure 2.3) is used when mounting an
encrypted file system and checking its consistency. Its primary job is to
ensure that the mount or £sck commands fail if the improper pass phrase
has been entered. If the correct pass phrase has been given, it decrypts the
key and stores it in the in-kernel copy of the superblock for use by the buffer
cache layer (see page 18).%

Once the file system has been mounted with the correct passphrase, it
follows the same access semantics as any other file system on the machine.
Consequently, applications will be able to access the encrypted information
without change. Further, while the file system is mounted, the traditional
security methods of user identification and file permissions must be depended

upon — for while the data resides on the disk in encrypted form, it will be

*Keeping a decrypted copy of the key in memory is a potential security compromise.
However, the effects should be minimal, since the key resides in kernel memory only when
the disk is mounted and only someone with root access could pull the key out of kernel
memory. If someone has root access to the computer, then there are much easier ways
to access the data while the device is mounted, and the additional risk of storing the
decrypted key in memory is minimized.

15

www.manaraa.com

algorithm create_lsfs_superblock
input: pass phrase used for encryption
output: new superblock structure

{

create minix superblock;

create random encryption key;

encrypt random encryption key with passphrase;
store random encryption key on superblock;
encrypt validation key with passphrase;

store validation string on superblock;

return superblock;

Figure 2.4: Algorithm for creating an LSFS superblock

decrypted whenever it is pulled into the computer’s main memory.

When no pass phrase is given, a user may still access the data on the
device. However, the data will remain encrypted, and the user will not be
allowed to see any of the file system structure on the device. Thus, one may
use a command such as dd that accesses the raw disk to create a backup of

the encrypted file system block by block.

Buffer cache changes

As previously outlined, the Linux buffer cache is responsible for getting
blocks of data from a device and storing them for use by the rest of the kernel.
The modified Linux kernel that supports LSF'S performs the encryption and
decryption when moving blocks of data between the buffer cache and the
device. This keeps the data stored on the device in encrypted form yet keeps

it in the buffer cache in clear form.

16

www.manaraa.com

algorithm load_lsfs_superblock
input: copy of the superblock from a disk
pass phrase used for encryption
output: copy of superblock in kernel memory
{
copy minix superblock information to kernel memory;
decrypt validation string in superblock with passphrase;
if(validation string <> known value)
return with error;
else

{

decrypt random encryption key using passphrase;

store random encryption key in kernel memory;
return kernel copy of superblock;

¥

Figure 2.5: Algorithm for loading LSFS superblock

To accomplish this, additional information is included in each individual
entry in the buffer cache. In the unmodified Linux kernel, each entry in the
cache contains a pointer to a buffer storing the data block, the device and
block numbers that identify where the data comes from, and pointers to
organize cache entries into lists (e.g., the cache keeps a list of dirty buffers,
a list of locked buffers, a list of clean buffers in least-recently-used order,
etc.). To support data encryption, four new fields have been added to each

entry in the cache:

1. A flag indicating if the data block needs to be stored in encrypted form

on the device.

2. A flag indicating if the kernel is currently in the process of reading

17

www.manaraa.com

encrypted data from the device.
3. A copy of the key used for encrypting and decrypting the block.

4. A pointer to a data transfer buffer that is used to store the encrypted

data on its way to or from the device.

When the kernel wants access to a block of data on a device, it first checks
if that block is already mapped to a buffer cache. If not, the kernel finds a
blank cache entry to store the data. At this point, the kernel checks its copy
of the device superblock for an encryption key; if one is found, the kernel
knows that the data on the device is stored in encrypted form. Therefore,
when it obtains its blank buffer cache entry, it sets the encrypted flag to
TRUE and generates the key that will be used to encrypt and decrypt that
data block. (The subsection on “Encryption strategy” (page 22) describes
how and why each block on the device has its own copy of an encryption
key.) If the kernel had not found an encryption key in the device superblock,
it would set the cache encrypted flag to FALSE. (See figure 2.7)

Then, whenever the kernel attempts to read the block from the device to
store it in the cache entry, it checks the encrypted flag. If the flag indicates
that the data is stored in encrypted form on the device, the kernel tells the
device driver to read the data block into the data transfer buffer instead
of directly into the cache entry. Then, when the device driver signals the
kernel that the read is complete, the kernel uses the key stored in the cache
entry to decrypt the data transfer buffer and store the plaintext in the cache
entry.

Similarly, when the kernel wants to write a block from the cache back

18

www.manaraa.com

algorithm prepare_encrypted_buffer
/* Performs the necessary tasks to prepare a
* buffer for transparent data encryption.
*/
input: disk buffer
output: disk buffer prepared for encryption
or decryption
{
if (buffer not already marked as prepared)
{
generate local key for buffer;
store local key in buffer;
get a free buffer from the cache;
link the two buffers;
mark the buffer as prepared;
b

return buffer;

¥

Figure 2.6: Algorithm for enabling a buffer to perform transparent encryp-
tion/decryption

19

www.manaraa.com

algorithm getblk /* get a block in the buffer cache */
input: device number
block number
output: a buffer in the buffer cache that can now be
used to store data from the device
{
if (block in hash queue)
{
update LRU list;
if (device uses encryption)
prepare_encrypted_buffer;
return buffer;

else

obtain free buffer;

if (device uses encryption)
prepare_encrypted_buffer;

put buffer on hash queus;

put buffer on LRU list;

return buffer;

Figure 2.7: Algorithm for obtaining a buffer

20

www.manaraa.com

algorithm make_request /* Sends a read or write request to
a device driver */
input: device number
block number
locked buffer from buffer cache
type of request(read or write)
output: none
{
prepare device to receive request;
if (buffer uses encryption)
{
unlock buffer;
if (read request)
mark buffer as waiting for encrypted read;
else
encrypt buffer data and store in data transfer buffer;

/* the following command makes the data transfer */
/* buffer the buffer that will be used for I/0 */
switch to the data transfer buffer;

lock data transfer buffer;

¥

submit request to device;

¥

Figure 2.8: Algorithm for doing a device read/write request

to the device, it checks the encrypted flag to see if it needs to encrypt the
block before writing. If it does, it stores the encrypted version of the data
block in the data transfer buffer and tells the device driver to write the

information in the data transfer buffer to the disk. (See figure 2.8.)

21

www.manaraa.com

Encryption strategy

As described earlier, DES (the underlying encryption scheme used by LSFS)
works by encrypting or decrypting an 8-byte block and then moving on to
the next block (see page 9). Using DES in CBC mode prevents two identical
8-byte blocks of plaintext from having the same ciphertext representation.
This encryption strategy is used when encrypting and decrypting a block
of data from the device to mask any patterns in the data on that block.
However, just as we want to prevent two identical 8-byte blocks of plaintext
from having the same ciphertext representation, we want to ensure that
two identical disk blocks on the same device do not appear identical when
encrypted. The type of block chaining used in CBC is not an efficient
algorithm in this situation because of the random access nature of individual
blocks on a device. A CBC-like algorithm would require that if we want to
read the nth block from a device, we also have to read the (n — 1)th block
to have the bitmask used in the block chaining process. If the user program
changes the data on the nth block, it would require re-enciphering and re-
writing all blocks coming after it on the disk.

A system of “master” and “local” encryption keys was used to solve
this problem. The encryption key stored on the superblock of the device
is the “master” key for the device. However, instead of being used directly
to encrypt/decrypt blocks on that device, it is used to generate a “local”
key for each block, and the local key is used for all of that block’s reads
and writes. (See the section covering the buffer cache, page 16.) Since each

block on the device gets its own encryption key, even two identical blocks

22

www.manaraa.com

will appear different when encrypted.

A local key is generated by encrypting the block number with the master
key. Because of the properties of DES encryption, if one does not know the
master key, there is no feasible way to determine the local key from the block
number alone. However, if an attacker is somehow able to determine the
local key that was used to encrypt/decrypt a disk block, the knowledge of
both the block number and the local key does not give enough information

to determine the master key.?

Buffer memory management

The Linux buffer cache does not occupy a fixed amount of memory. Instead,
whenever the cache needs to obtain free buffers, it first checks if it can
dedicate more memory to the buffers. If so, it will expand the size of the
buffer cache to make room for the free buffers; otherwise, it gets rid of old
cache data to make room for the new disk blocks. This allocation policy
makes the cache more efficient because it enables the maximum amount of
data to reside in memory, minimizing the number of times the operating
system needs to access the disk.

However, the buffer cache’s dynamic growth tends to rapidly claim all

®One possible mode of cryptanalysis, called the known-plaintext attack, depends upon
knowing some plaintext P and its ciphertext representation ' and using that information
to determine the &k such that E(P, k) = C. I have found no literature suggesting that
the DES cipher is vulnerable to this specific attack. However, even if there is a small
vulnerability to the known-plaintext attack, the system of master and local keys should
be no less secure than a conventional system that uses the same key to encrypt each block.
If the cryptanalyst was able to determine a block’s local key from examining the block’s
data — the first step in conducting the known-plaintext attack against this system —
then he would have been able to determine the single key used in a conventional system
from examining the same data.

23

www.manaraa.com

algorithm try_to_free /* attempt to reclaim cache memory */

input: candidate memory page
output: success or failure indication
{
for(every buffer on page)
{
if (buffer is not a data transfer buffer
AND it is dirty or in use)
return failure;
if (buffer is a data transfer buffer
AND its plaintext is dirty or in use)
return failure;
b
for(every buffer on page)
{
if (buffer is not a data transfer buffer)
{
remove buffer from lists;
if (buffer comes from encrypted device)
{
unlink plaintext and data transfer buffers;
insert data transfer buffer on free list;

unlink plaintext and data transfer buffers;
remove plaintext buffer from lists;
insert plaintext buffer on free list;
b
put buffer in unused list;
b
free page;
return success;

¥

Figure 2.9: Algorithm for reclaiming cache memory

24

www.manaraa.com

available memory. Thus, in order for the cache to remain efficient, it needs to
be able to relinquish its memory when needed by other parts of the operating
system. The key algorithm in this process is try_to_free (figure 2.3), which
checks if a particular memory page used by the cache can be relinquished to
other parts of the operating system. The algorithm succeeds if all buffers on
the memory page are clean (i.e., the buffer contains the same information
as its corresponding disk block) and if no processes are using the buffer.
The presence of encrypted data transfer buffers in the cache memory
space complicates the original algorithm. When the algorithm encounters
a data transfer buffer on the page it is attempting to free, it needs to see
if its corresponding plaintext buffer is clean and unused. If it is, then the
algorithm may proceed; otherwise, the algorithm fails, since the data transfer
buffer may not be reclaimed by the system as long as its plaintext equivalent
is dirty or in use. If the algorithm does reclaim the memory of a data transfer

buffer, it marks the corresponding plaintext buffer as available for use.

3 Performance analysis

The use of LSFS carries with it a performance price stemming from the
overhead of performing a computationally-expensive encryption or decryp-
tion every time an LSF'S disk is accessed. The degree of performance loss
for a particular application will depend upon its 1/O intensity and how effi-
ciently the buffer cache performs to minimize actual disk accesses for the ap-
plication. Three benchmark tests were used to measure LSFS’ performance

under various workloads. All benchmarks were performed on a 90 megahertz

25

www.manaraa.com

File system Elapsed time
(95% confidence interval)

Clear FS, regular kernel | 43.84+ 0.1
Clear FS, modified kernel | 44.7+ 0.4
LSFS 449+ 0.2
CFS 69.7+ 0.5

Table 3.1: Compilation

Pentium with 32 megabytes of primary memory and a 700 megabyte IDE
hard drive. Each benchmark was run ten times on each of four file systems
— the minix file system implemented in the Linux 1.2.8 kernel, the same
minix file system code running in the modified, LSF'S-enabled kernel, the
LSFS file system, and CFS. The tables in this section report the average
execution time for the set of runs and the corresponding 95% confidence
interval.

Table 3.1 shows the amount of time it took to compile the CFS soft-
ware on each of the four file systems. This benchmark measures the file
system performance under light-to-moderate workloads with moderate disk
I/0 activity (the CFS source contains roughly 9200 lines of code and 4750
semicolons). This benchmark exhibits the benefits the buffer cache brings
to transparent disk encryption. LSFS, which uses the read/write caching
built into the kernel, ran with only a 3% overhead. CFS, which uses no
write caching, ran 59% slower.

Table 3.2 shows the results from copying a 6.4 megabyte compressed tar
file from a remote file server onto the four file systems and extracting the

archived files. This tests the performance of the file systems under heavy

26

www.manaraa.com

File system Elapsed time
(95% confidence interval)

Clear FS, regular kernel 60.4 £ 0.3
Clear FS, modified kernel | 62.1 4+ 0.8
LSFS 17724+ 1.0
CFS 311.3+ 04

Table 3.2: Large tar copy and extract

disk utilization with minimal cache benefits. The lack of efficient caching
leads to a pronounced difference between the encrypting and non-encrypting
file systems. In this test, LSF'S runs slower than a non-encrypting file sys-
tem by a factor of 2.9; CFS’ poor performance, a factor of 5.1 slower than
non-encrypting file systems, can be attributed to the additional overhead
required to copy data through the NF'S protocol.

Finally, table 3.3 shows the time taken to run both the CFS source-
file compilation and the tar file extraction concurrently. This tests the file
systems under a heavy load. It also stresses the cache as two processes
compete for buffer space and generate more random disk access patterns.
Under this burden, LSF'S runs a factor of 2.1 slower; CFS runs slower by a
factor of 3.8.

Figure 3.1 summarizes the performance of the four file systems. While
LSFS runs slower than non-encrypting file systems, especially when caching
benefits are reduced, the low overhead of the kernel implementation allows

for a substantial performance improvement over CFS.

27

www.manaraa.com

Table 3.3: Concurrent tar file extraction and source compilation

seconds

350.00

File system

Elapsed time
(95% confidence interval)

Clear FS, regular kernel
Clear FS, modified kernel
LSFS

CFS

97.6 £ 0.3

107.94+ 0.9
208.5+£0.5
378.9+£0.5

Performance analysis

MITiX: regular Kernel

300.00

250.00

200.00

150.00

100.00

50.00

0.00

compilation tar file extraction

Figure 3.1: Comparison

concurrent compilation
and extraction

of file system performance

28

Minix:“modified kermel

www.manaraa.com

4 Conclusion

By integrating data encryption into the operating system kernel, LSF'S pro-
vides thorough security for information stored on the local machine. Unlike
encryption programs that run outside of the kernel, LSFS is able to use
the buffer cache to minimize the performance impact of encryption. Thus,
LSFS demonstrates that operating system support for encrypted file systems
is a viable solution to the problem of providing increased security without

decreasing convenience or performance.

29

www.manharaa.com

A Selected source code listings

A.1 encrypt.c

[ek ks sk ok kR sk sk ok ok kR sk sk ko kR ok ok ko Kok ok kK kR ok ok ok Rk K

* encrypt.c

*

* This is the file that contains the core encryption/decryption

routines for the extended Linux kernel. There are two key routines

that currently depend upon a simple DES implementation lifted
shamelessly from CFS. However, more sophisticated encryption
* can and should be substituted in this file at a later date.

*

The important routines that MUST be provided to the kermel are:
*

EET T

* void scramble_key(key master_key, unsigned long block_no, key local_key);
* This routine is responsible for taking a master key (constant for the
* entire filesystem) and a block number and generating a local key

* that will be used for encrypting/decrypting that particular block

* on the filesystem.

EET T

* void encrypt_buffer(char #plaintext, char *ciphertext, key local_key, int size);

* This routine takes a buffer "plaintext" of size "size" and encrypts it using
* the local_key, storing the result in ciphertext.
EET T

* void decrypt_buffer(char *plaintext, char *ciphertext, key local_key, int size);
* This routine needs to reverse what was done above.

ok ok Rk Rk Rk Rk Rk kR Rk kR Rk ok kR Rk ok kR Rk ok /)

/* $Id: encrypt.c,v 1.8 1996/02/24 00:44:58 bkdewe Exp bkdewe $ */

#ifndef __KERNEL__
#include <stdio.h>
#endif /* __KERNEL__ */

#include <linux/fs.h> /* Contains the definition of "key" %/
#define C_BLOCK_SIZE 8 /% Size of an encryption "chunk" */
typedef char vector [C_BLOCK_SIZE];

void initVector(vector);

void xorVector(vector, vector);

void copyVector(vector, vector);

void printKey(key k) ; /* Used for debugging */

/* The following routines are in cfs_des.c */

/* A more sophisticated algorithm will need to replace these calls. */

30

www.manharaa.com

int q_block_cipher(key short_key, key text, int decrypting);
int des_block_cipher(key expanded_key, key text, int decrypting);
int des_key_setup(key _key, char *subkeys);

void key_crunch(char *buffer, char *key, int size);

void scramble_key(key master_key, unsigned long block_no, key local_key)

{
char ex_key[128], *alias_block_no;
int i;
alias_block_no = (char *)&block_no;
for(i = 0; i < KEY_SIZE; i++)
local_key[i] = alias_block_nol[i % sizeof(long)]l;
/* Use the master key to encrypt the doubled-binary representation of the */
/* block number we generated above. The result is the local key for the #/
/* block. This process should generate a local key that cannot be determined #/
/* without knowledge of the master key. */
des_key_setup(master_key, ex_key);
des_block_cipher(ex_key, local_key, 0);
}

void encrypt_buffer(char *plaintext, char *ciphertext, key local_key, int size)
{

char ex_key[128], #cur;

int i;

vector iv;

initVector(iv);
des_key_setup(local_key, ex_key); /* Generate extended key */
if(size % 8)
#ifdef __KERNEL__
panic("Buffer size for filesystem encryption not a multiple of 8!\n");
#else
{
fprintf(stderr, "Buffer size for filesystem encryption not a multiple of 8!\n");
abort();
}

#endif

memcpy(ciphertext, plaintext, size);

cur = ciphertext;

for(i = 0; i < size / 8; i++)

{

xorVector(cur, iv);

des_block_cipher(ex_key, cur, 0);

31

www.manharaa.com

xorVector(iv, cur);

cur += 8;

void decrypt_buffer(char *plaintext, char *ciphertext, key local_key, int size)
{

char ex_key[128], #cur;

int i;

vector iv, old;

initVector(iv);
des_key_setup(local_key, ex_key); /* Generate extended key #*/
if(size % 8)
#ifdef __KERNEL__
panic("Buffer size for filesystem encryption not a multiple of 8!\n");
#else
{
fprintf(stderr, "Buffer size for filesystem encryption not a multiple of 8!\n");
abort();
}

#endif

memcpy(plaintext, ciphertext, size);
cur = plaintext;

for(i = 0; i < size / 8; i++)

{
copyVector(old, cur);
des_block_cipher(ex_key, cur, 1);
xorVector(cur, iv);
xorVector(iv, old);
cur += 8;
}
}
void

initVector(vector v)

{
int i;
for(i = 0; i < C_BLOCK_SIZE; i++)
v[i] = ’\0’;
}
void

xorVector(vector new, vector base)

{

int i,

32

www.manharaa.com

for(i = 0; i < C_BLOCK_SIZE; i++)

new[i]l ~= base[il;

void

copyVector(vector dest, vector src)

{
int i;
for(i = 0; i < C_BLOCK_SIZE; i++)
dest[i] = srclil;
}

A.2 make_request()

static void make_request (int major,int rw, struct buffer_head * bh)
{

unsigned int sector, count;

struct request * req;

int rw_ahead, max_req;
/x ... %/

/* If we’re going to be doing an encrypted data transfer, set that up before
* looking for the free request.

*/

if ((bh->b_encrypted) && (bh->b_blocknr > 1))
{
unlock_buffer(bh);
if(rw == READ)
{
bh->b_encrypted_read = 1; /* Flag this buffer */
mark_buffer_clean(bh); /* Hark us as clean */
h = bh->b_cipher; /% Read into this block */

bh->b_list = BUF_CLEAN; /* Prevents refiling... */
else

encrypt_buffer(bh->b_data, bh->b_cipher->b_data,
bh->b_local_key, bh->b_size);
mark_buffer_clean(bh);

h = bh->b_cipher; /* Write from this block */

bh->b_list = BUF_CLEAN; /* Prevents refiling... */
}

lock_buffer(bh);

33

www.manharaa.com

if (!bh)
panic("make_request:Requesting null buffer!\n");

/% look for a free request. */
/* ..o/

/% £ill up the request-info, and add it to the queue */
req->cmd = rw;
req->errors = 0;
req->sector = sector;
req->nr_sectors = count;

req->current_nr_sectors = count;

req->bh = bh;

req->bhtail = bh;
req->buffer = bh->b_data;
req->sem = NULL;
req->next = NULL;

add_request (major+blk_dev,req);

A.3 getblk()

void prepare_encrypted_buffer(struct buffer_head *bh)
{

/% This is an encrypted filesystem! */
if (1bh->b_encrypted)
{
bh->b_encrypted = ENC_PLAINTEXT;
scramble_key(sb->s_master_key, block, bh->b_local_key);
if (!bh->b_cipher)
{
/* Setup bh->b_cipher, the data transfer
buffer that holds the ciphertext.
*/
bh->b_cipher = getcipherblk(isize, size);
bh->b_cipher->b_encrypted = ENC_CIPHERTEXT;
bh->b_cipher->b_dev = bh->b_dev;
bh->b_cipher->b_blocknr = bh->b_blocknr;
bh->b_cipher->b_size = bh->b_size;
bh->b_cipher->b_count = bh->b_count;
bh->b_cipher->b_dirt = bh->b_dirt;
bh->b_cipher->b_lock = bh->b_lock;

bh->b_cipher->b_uptodate = bh->b_uptodate;

34

www.manharaa.com

bh->b_cipher->b_flushtime = bh->b_flushtime;
bh->b_cipher->b_req = bh->b_req;

bh->b_cipher->b_cipher = bh;

}

else if (bh->b_encrypted == ENC_CIPHERTEXT)
/% If we get here, it means we found a ciphertext
buffer in the queues. THIS SHOULD NEVER HAPPEN.
Stop here as a sanity check.
*/

panic("getblk working with ENC_CIPHERTEXT buffer!");

struct buffer_head * getblk(dev_t dev, int block, int size)
{

struct buffer_head # bh;

int isize = BUFSIZE_INDEX(size);

struct super_block #*sb;

sb = get_super_nowait(dev);

/% Update this for the buffer size lav. */

buffer_usagel[isizel++;

/* If there are too many dirty buffers, we wake up the update process
now so as to ensure that there are still clean buffers available
for user processes to use (and dirty) */

repeat:

bh = get_hash_table(dev, block, size);

if (bh) {
if (bh->b_uptodate && 'bh->b_dirt)

put_last_lru(bh);

if('bh->b_dirt) bh->b_flushtime = 0;
/* But before we can continue, we need to see if this is an encrypting */
/% filesystem buffer, and if so, mark it. */
if(sb && sb->s_encrypted)
{

prepare_encrypted_buffer(bh);

else

bh->b_encrypted = 0;

/% Note: bh could point to a block that used to */

/% be encrypted but now isn’t. We need to check on */
/* the b_cipher pointer and get rid of it if it */

/* exists. */

if (bh->b_cipher)

35

www.manharaa.com

/* Break connection... %/
bh->b_cipher->b_cipher = NULL;
bh->b_cipher->b_dev = Oxffff;
bh->b_cipher->b_encrypted = 0;
put_last_free(bh->b_cipher);

bh->b_cipher = NULL;

}
bh->b_encrypted_read = 0; /% By default... */

return bh;

while(!free_list[isize])
{

refill_freelist(size);

if (find_buffer(dev,block,size))

goto repeat;

bh = free_list[isizel;

remove_from_free_list(bh);

/% OK, FINALLY we know that this buffer is the only one of its kind, */
/* and that it’s unused (b_count=0), unlocked (b_lock=0), and clean */
bh->b_count=1;
bh->b_dirt=0;
bh->b_lock=0;
bh->b_uptodate=0;
bh->b_flushtime = 0;
bh->b_req=0;
bh->b_dev=dev;
bh->b_blocknr=block;
insert_into_queues(bh);
/% But before we can continue, we need to see if this is an encrypting */
/% filesystem buffer, and if so, mark it. */
/% Code is essentially duplicated from above... */
if(sb && sb->s_encrypted)
{
prepare_encrypted_buffer(bh);
} else bh->b_encrypted = 0;

bh->b_encrypted_read = 0; /# By default... ¥/

return bh;

36

www.manharaa.com

A.4 wait_on_buffer()

extern inline void wait_on_buffer(struct buffer_head # bh)

{
if (bh->b_lock)
__wait_on_buffer(bh);
if (bh->b_cipher) /* If we’re encrypted... */
if (bh->b_cipher->b_lock) /% We must check b_cipher’s lock, too. */
__wait_on_buffer (bh->b_cipher);
if (bh->b_encrypted_read) /% If we were reading... */
{
bh->b_encrypted_read = 0;
decrypt _buffer(bh->b_data, /* Decrypt the data from the disk. */
bh->b_cipher->b_data,
bh->b_local_key,
bh->b_size);
bh->b_uptodate = 1;
}
}

A.5 lsfs_read_super()

struct super_block *1sfs_read_super(struct super_block *s,void *data,

int silent)

struct buffer_head *bh;

struct lsfs_super_block *ms;

int i,dev=s->s_dev,block;

extern void invalidate_buffers(dev_t);

key validate;

if (32 != sizeof (struct lsfs_inode))
panic("bad i-node size");
if(!data)
{
printk("LSFS-fs: passed NULL pass key\n");
return NULL;
}
MOD_INC_USE_COUNT;
lock_super(s);
set_blocksize(dev, BLOCK_SIZE);
printk("Attempting to load LSFS superblock\n");
if (!(bh = bread(dev,1,BLOCK_SIZE))) {
s->s_dev=0;
unlock_super(s);
printk("LSFS-fs: unable to read superblock\n");

MOD_DEC_USE_COUNT;

return NULL;

37

www.manharaa.com

}
ms = (struct lsfs_super_block #) bh->b_data;
/* Note: data must hold the user’s pass key */
decrypt_buffer(validate, ms->s_validate, data, KEY_SIZE);
if(strcmp(validate, “bkdewe!"))
{
s->s_dev=0;
unlock_super(s);
printk("LSFS-fs: Invalid pass key.\n");
MOD_DEC_USE_COUNT;
return NULL;
}
s->s_encrypted = 1;
/* By storing the decrypted masterkey in s_master_key,
* the buffer cache layer will know to encrypt/decrypt blocks
* from this device.
*/

decrypt _buffer(s->s_master_key, ms->s_masterkey, data, KEY_SIZE);

s->u.lsfs_sb.s_ms = ms;
s->u.lsfs_sb.s_sbh = bh;
s->u.lsfs_sb.s_mount_state = ms->s_state;

s->

3

_blocksize = 1024;

s->

3

_blocksize_bits = 10;

s->u.lsfs_sb.s_ninodes = ms->s_ninodes;

s->u.lsfs_sb.s_nzones = ms->s_nzones;

s->u.lsfs_sb.s_imap_blocks = ms->s_imap_blocks;
s->u.lsfs_sb.s_zmap_blocks = ms->s_zmap_blocks;
s->u.lsfs_sb.s_firstdatazone = ms->s_firstdatazone;
s->u.lsfs_sb.s_log_zone_size = ms->s_log_zone_size;
s->u.lsfs_sb.s_max_size = ms->s_max_size;
s->s_magic = ms->s_magic;

if (s->s_magic == LSFS_SUPER_HAGIC) {
s->u.lsfs_sb.s_dirsize = 16;
s->u.lsfs_sb.s_namelen = 14;

} else if (s->s_magic == LSFS_SUPER_MAGIC2) {
s->u.lsfs_sb.s_dirsize = 32;
s->u.lsfs_sb.s_namelen = 30;

} else {

s->s_dev = 0;

unlock_super(s);

brelse(bh);

if (!silent)
printk("VFS: Can’t find a 1sfs filesystem on dev 0x%04x.\n", dev);

HOD_DEC_USE_COUNT;

return NULL;

38

www.manharaa.com

/* Invalidate any buffers still in memory */
invalidate_buffers(s->s_dev);
for (i=0;i < LSFS_I_MAP_SLOTS;i++)
s->u.lsfs_sb.s_imap[i] = NULL;
for (i=0;i < LSFS_Z_MAP_SLOTS;i++)
s->u.lsfs_sb.s_zmap[i] = NULL;
block=2;
printk("LSFS superblock successfully read!\n");
for (i=0 ; i < s->u.lsfs_sb.s_imap_blocks ; i++)
if ((s->u.lsfs_sb.s_imap[il=bread(dev,block,BLOCK_SIZE)) != NULL)
block++;
else
break;
for (i=0 ; i < s->u.lsfs_sb.s_zmap_blocks ; i++)
if ((s->u.lsfs_sb.s_zmap[il=bread(dev,block,BLOCK_SIZE)) != NULL)
block++;
else
break;
if (block !'= 2+s->u.lsfs_sb.s_imap_blocks+s->u.lsfs_sb.s_zmap_blocks) {
for(i=0;i<LSFS_I_MAP_SLOTS;i++)
brelse(s->u.lsfs_sb.s_imap[il);
for(i=0;i<LSFS_Z_MAP_SLOTS;i++)
brelse(s->u.lsfs_sb.s_zmap[il);
s->s_dev=0;
unlock_super(s);
brelse(bh);
printk("LSFS-fs: bad superblock or unable to read bitmaps\n");
MOD_DEC_USE_COUNT;
return NULL;
}
set_bit (0,s->u.lsfs_sb.s_imap[0]->b_data);
set_bit (0,s->u.lsfs_sb.s_zmap[0]->b_data);
unlock_super(s);
/* set up enough so that it can read an inode */
s->s_dev = dev;
s->s_op = &lsfs_sops;
s->s_mounted = iget(s,LSFS_ROOT_IND);
if (!s->s_mounted) {
s->s_dev = 0;
brelse(bh);
printk("LSFS-fs: get root inode failed\n");
MOD_DEC_USE_COUNT;
return NULL;
}
if (!(s->s_flags & HS_RDONLY)) {
ms->s_state &= "LSFS_VALID_FS;

mark_buffer_dirty(bh, 1);

39

www.manharaa.com

s->s_dirt = 1;
}
if (!(s->u.lsfs_sb.s_mount_state & LSFS_VALID_FS))
printk ("LSFS-fs: mounting unchecked file system, "
"running fsck is recommended.\n");
else if (s->u.lsfs_sb.s_mount_state & LSFS_ERROR_FS)
printk ("LSFS-fs: mounting file system with errors, "

"running fsck is recommended.\n");

return s;

40

www.manharaa.com

Bibliography

[1] Dataencryption standard. FIPS PUB 46, National Bureau of Standards,

Washington, DC, January 1977.

[2] DES modes of operation. FIPS PUB 81, National Bureau of Standards,
Washington, DC, December 1980.

[3] Matt Blaze. A cryptographic file system for Unix. Pre-print of
a paper presented at the First ACM Converence on Communica-
tions and Computing Security, Fairfax, VA, November 3-5, 1993.

file:/ /research.att.com /dist/mab/cfs.ps.

[4] R. Rivest. The MD5 message-digest algorithm. RFC 1321, April 1992.

41

www.manharaa.com

